SITEDRAIN™ SHEET 110 SERIES

PREFABRICATED SHEET DRAINS

PRODUCT OVERVIEW

SITEDRAIN Sheet 110 Series prefabricated drains are constructed using a formed polystyrene core with a nonwoven filter fabric bonded to one side. The filter fabric is bonded to each dimple to prevent soil intrusion into the core flow channels while allowing water to freely enter the drain core. The core provides an uninterrupted path for water to flow to designated drainage exits.

SITEDRAIN Sheet 110 Series is an economical solution for sub-surface, single-sided drainage applications requiring moderate strength and high flow capacity. SITEDRAIN Sheet 110 Series products are available with filter fabrics meeting AASHTO M 288-06 specifications.

Typical Property Values	ASTM Test Method	Unit of Measure	110	114	116	118
FABRIC						
Material ¹			PP	PP	PP	PP
Water Flow Rate	D 4491	gpm/ft²	190	150	110	90
		Lpm/m ²	7,743	6,113	4,483	3,668
Grab Tensile Strength	D 4632	lbs	90	130	160	205
		N	400	578	712	912
CBR Puncture Resistance	D 6241	lbs	225	360	450	600
		kN	1.00	1.55	2.00	2.66
Apparent Opening Size	D 4751	sieve	50	70	70	80
		mm	0.297	0.210	0.210	0.177
Permittivity	D 4491	sec ⁻¹	2.8	2.1	1.8	1.3
Grab Elongation	D 4632	%	65	70	70	70
UV Resistance	D 4355	% / 500 Hrs	70	70	70	70
AASHTO M 288-06 ²	Survivability	-	-	Class 3	Class 2	Class 1
CORE						
Material ¹			HIPS	HIPS	HIPS	HIPS
Thickness	D 1777	in	.44	.44	.44	.44
		mm	11	11	11	11
Compressive Strength	D 1621	psf	11,000	11,000	11,000	11,000
		kPa	527	527	527	527
Flow Rate ³	D 4716	gpm/ft	18	18	18	18
		Lpm/m	223	223	223	223

^{1 -} PP = Polypropylene; HIPS = High Impact Polystyrene

All technical information contained in this document is accurate as of time of publishing. AWD reserves the right to make changes to products and literature without notice. Please refer to our website for the most current technical information available. Unless otherwise stated, all physical and performance properties listed are Typical Values as defined in ASTM D 4439.

^{2 -} AASHTO Designation: M 288-06 Standard Specification for Highway Applications; American Association of State Highway and Transportation Officials, 2006. Geotextile survivability classification from installation stresses in subsurface drainage applications.

^{3 -} In-plane flow rate measured at 3,600 psf (172 kPa) compressive load and a hydraulic gradient of 1.0.