Material Delivery
Terramesh® System units are supplied in a collapsed form, folded and bundled. The bundles are compressed and strapped together at the factory for ease of shipping and handling. Each bundle is labeled with a tag listing the sizes of the units contained. Lacing wire is supplied in coils and ring fasteners are shipped in boxes. Preformed corner stiffeners are shipped in boxes.

Assembly
The folded units shall be taken out from the bundle and placed on a hard flat surface. Terramesh® System units shall be opened, unfolded and pressed out to their original shape. Front, back, and end panels shall be lifted to a vertical position. Panels shall be fastened together with the projecting heavier gauge selvedge wire by firmly wrapping the selvedge wire around the selvedge or edge wire of the intersecting panel or back panel. The inner diaphragm panel shall be lifted into a vertical position and secured in the same manner. All edges of the diaphragm and back panels shall be tied or fastened to the front and back of the facing section.

Fastening Procedure
When using lacing wire, cut off a piece of wire approximately 1.5 times the length of the edge to be tied. Longer edges shall be joined by several lengths of wire. Tie wires shall be secured around the selvedge wire or heavier edge wire, where present, by looping and twisting the lacing wire around itself. Proceed tying with alternate double and single loops. Double loops shall be made at intervals not greater than 6 in. (150 mm). All panels shall be pulled tightly together during the tying operation. Pliers may be used to create tight joints. The other end of the lacing wire shall be secured by again looping and twisting the wire around itself. When using tie wire to assemble the units, care should be taken to avoid damaging the wire coating. When steel ring fasteners are used, the use of either a mechanical or a pneumatic fastening tool is required. Spacing of the rings shall be in accordance with ASTM A975-97 Table 2, Panel to Panel connection, Pull-Apart Resistance. In any case, ring fasteners spacing shall not exceed 6 in. (150 mm). Rings shall be installed at the end and center diaphragms and along all edges.

Foundation Preparation
The foundation on which the Terramesh® System units are to be placed shall be level, and graded to the elevations as shown on the project construction drawings. The foundation for Terramesh® System shall be free of surface irregularities, loose material, and vegetation in accordance with the project specifications. Appropriate measures shall be taken for filtering and drainage of the foundation, as per the project specifications (filter cloth, drain works, etc.). Geotextiles required to be installed shall comply with the requirements for subsurface drainage applications.

Installation, Filling and Soil Compaction
After the foundation has been prepared, the pre-assembled Terramesh® System units are placed in position empty, and shall be tied or fastened to adjacent units along all containing edges in order to form a continuously connected, monolithic structural unit. Rocks for the gabion facing section may be produced by any suitable quarrying method, and by the use of any device that yields the required sizes within the gradation limits chosen. Rocks shall be hard, angular to round, durable and of such quality that they shall not disintegrate on exposure to water or weathering during the life of the structure. Rocks shall range between 4 in. (100 mm) and 8 in. (200 mm). The range in sizes may allow for a variation of 5% oversize and/or 5% undersize rock, provided it is not placed on the exposed surface. In all cases, the oversize rock shall not be larger than 10 in. (250 mm), and the undersize rock shall not be smaller than 2 in. (50 mm).
Rock shall be placed in 11 in. (280 mm) lifts for 2.6 ft (0.80 m) high Terramesh® System units, and 10 in. (250 mm) for 18 in. (0.5 m) high units. The fill layer shall never be more than 12 in. (300 mm) higher than any adjoining cell. Care shall be taken when placing the stone to ensure that the PVC coating is not damaged. After a layer of rock has been placed in the cell, sufficient hand manipulation of the rock shall be performed to minimize voids and achieve a maximum density of the rock. The rock in exposed vertical faces shall be hand placed to reduce voids in the outer face. Stiffeners or internal cross ties shall be installed connecting the front and back faces of any supported or exposed face at the vertical third points for a 2.6 ft (0.80 m) high unit, as the cell is being filled. Preformed corner stiffeners are installed at 45° to the face/side of the unit, extending an equal distance along each side being braced (approximately 1 ft [300 mm]). The gabion facing section of the Terramesh® System shall be overfilled to approximately 1.2 in. (25-50 mm) to allow for natural settlement. The top surface shall be smoothly levelled, minimizing voids. Ensure that diaphragm tops are accessible for connecting.

Closing
After the rock has been levelled and the voids minimized, fold the lid down and pull edges of the panels together. It should require a light stretching using an appropriate closing tool or lid closer in order to bring the mesh panel pieces together. Care shall be taken that the mesh is not deformed or the coating on the wire damaged. The projecting selvedge wire of the lid shall be wrapped two complete turns around the selvedge wire or edge wire on the sides. The lid shall be tightly tied along all edges, ends and tops of diaphragms. Adjacent lids may be tied or attached simultaneously. All projecting sharp ends of wire shall be turned in on the completed gabion structure.

Backfill Structural Embankment
Prior to starting this operation, a geotextile filter shall be placed at the facing section and backfill interface. The geotextile should have a 12 in. (300 mm) return at both top and bottom. Compaction within 3 ft (1 m) of the face should be carefully performed with a walk-behind compactor to prevent any distortions in the wall or slope face. Place structural backfill in approximately 8 in. (200 mm) lifts and compact it to the required level. Mechanically stabilized earth structures shall be made of a good quality, free draining, granular and/or selected fill. The recommended fill gradation is in the range of 0.001-0.75 in. (0.02-19 mm), or as indicated by the project construction drawing. Soils outside of this range may be suitable, providing they have been approved by a geotechnical engineer. Compaction shall be performed to 95% of Standard Proctor, by use of conventional compaction equipment.